Bailey, R. L. Current regulatory guidelines and resources to support research of dietary supplements in the United States. Crit. Rev. Food Sci. Nutr. 60, 298–309 (2020).
Google Scholar
Pawar, R. S. & Grundel, E. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines ( PEAs ). Drug Test. Anal. 9, 500–517 (2017).
Google Scholar
Navarro, V. et al. The contents of herbal and dietary supplements implicated in liver injury in the United States are frequently mislabeled. Hepatol. Commun. 3, 792–794 (2019).
Google Scholar
Vincenzo, B., Riccio, F., Fonseca-santos, B., Colerato, P. & Chorilli, M. Characteristics, biological properties and analytical methods of trans -resveratrol : a review. Crit. Rev. Anal. Chem. 50, 339–358 (2020).
Google Scholar
Brizzi, A., Brizzi, V. & Corradini, D. Identification and quantification of trans – resveratrol in dietary supplements by a rapid and straightforward RP-HPLC method. J. Liq. Chromatogr. Relat. Technol. 31, 2089–2100 (2008).
Google Scholar
Jagwani, S., Jalalpure, S., Dhamecha, D. & Hua, G. S. A Stability indicating reversed phase HPLC method for estimation of trans -resveratrol in oral capsules and nanoliposomes. Anal. Chem. Lett. 9, 711–726 (2019).
Google Scholar
Moreton-Lamas, E., Lago-Crespo, M., Lage-Yusty, M. A. & Lopez-Hernandez, J. Comparison of methods for analysis of resveratrol in dietary vegetable supplements. Food Chem. 224, 219–223 (2017).
Google Scholar
Omar, J. M., Yang, H., Li, S., Marquardt, R. R. & Jones, P. J. H. Development of an improved reverse-phase high-performance liquid chromatography method for the simultaneous analyses of trans -/ cis -resveratrol, quercetin, and emodin in commercial resveratrol supplements. J. Agric. Food Chem. 62, 5812–5817 (2014).
Google Scholar
Solich, P., Fibigr, J. & Satínsk, D. A study of retention characteristics and quality control of nutraceuticals containing resveratrol and polydatin using fused-core column chromatography ˇ. J. Pharm. Biomed. Anal. 120, 112–119 (2016).
Google Scholar
Babu, S. K., Kumar, K. V. & Subbaraju, G. V. Estimation of trans-resveratrol in herbal extracts and dosage forms by high-performance thin-layer chromatography. Chem. Pharm. Bull. 53, 691–693 (2005).
Google Scholar
Orlandini, S., Giannini, I., Pinzauti, S. & Furlanetto, S. Multivariate optimisation and validation of a capillary electrophoresis method for the analysis of resveratrol in a nutraceutical. Talanta 74, 570–577 (2008).
Google Scholar
Gao, L., Chu, Q. & Ye, J. Determination of trans-resveratrol in wines, herbs and health food by capillary electrophoresis with electrochemical detection. Food Chem. 78, 255–260 (2002).
Google Scholar
Zhang, H., Xu, L. & Zheng, J. Anodic voltammetric behavior of resveratrol and its electroanalytical determination in pharmaceutical dosage form and urine. Talanta 71, 19–24 (2007).
Google Scholar
Yardim, Y. Electrochemical determination of resveratrol in dietary supplements at a boron-doped diamond electrode in the presence of hexadecyltrimethylammonium bromide using square-wave adsorptive stripping voltammetry. J. Serbian Chem. Soc. 82, 175–188 (2017).
Google Scholar
Liu, J. X., Wu, Y. J., Wang, F., Gao, L. & Ye, B. X. Adsorptive voltammetric behaviors of resveratrol at graphite electrode and its determination in tablet dosage form. J. Chinese Chem. Soc. 55, 264–270 (2008).
Google Scholar
Klein, R. S. et al. Trans-resveratrol electrochemical detection using portable device based on unmodified screen-printed electrode. J. Pharm. Biomed. Anal. 207, 114399–114407 (2021).
Google Scholar
Rao, S. et al. Pharmacological exploration of phenolic compound : raspberry ketone-update 2020. Plants 10, 1323–1339 (2021).
Google Scholar
Lee, J. Further research on the biological activities and the safety of raspberry ketone is needed. NFS 2, 15–18 (2016).
Google Scholar
Hao, L. et al. Acute feeding suppression and toxicity of raspberry ketone [4-(4-hydroxyphenyl)-2-butanone] in mice. Food Chem. Toxicol. 143, 111512 (2020).
Google Scholar
Mir, T. M., Ma, G., Ali, Z., Khan, I. A. & Mohammad, K. Effect of raspberry ketone on normal, obese and health-compromised obese mice: A preliminary study. J. Diet. Suppl. 18, 1–16 (2021).
Google Scholar
Al-othman, Z. A., Al-warthan, A., Aboul-enein, H. Y., Za’abi, M., & Al Ali, I. Mechanistic approaches of PhE and PPF columns separation for rasberry ketone and caffeine. J. Liq. Chromatogr. Relat. Technol. 38, 1324–1332 (2015).
Maggi, F. et al. Analysis of food supplement with unusual raspberry ketone content. J. Food Process. Preserv. 41, 13–19 (2016).
Aboul-Enein, H. Y., Antochi, O. M., Nechifor, G. & Bunaciu, A. A. Analysis of raspberry ketone in nutraceutical formulation using Fourier transform infrared spectrophotometric method. Open Bioact. Compd. J. 7, 8–13 (2019).
Google Scholar
Higashi, Y. Simple HPLC-fluorescence determination of raspberry ketone in fragrance mist after pre-column derivatization with 4-Hydrazino – 7- nitro – 2, 1, 3 – benzoxadiazole. J. Anal. Sci. Methods Instrum. 6, 44–49 (2016).
Higashi, Y. Improved method for determination of raspberry ketone in fragrance mist by HPLC-fluorescence analysis after pre-column derivatization with ( N -chloroformylmethyl- N -methylamino ). J. Anal. Sci. Methods Instrum. 8, 17–24 (2018).
Abdelaal, S. H., El, N. F., Hassan, S. A. & El-kosasy, A. M. Quality control of dietary supplements : An economic green spectrofluorimetric assay of Raspberry ketone and its application to weight variation testing. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 261, 120032–120038 (2021).
The World Anti-Doping Agency. The Prohibited Stimulants List. https://www.wada-ama.org/en/content/what-is-prohibited/prohibited-in-competition/stimulants.
Percy, D. W. et al. Determination of Citrus aurantium protoalkaloids using HPLC with acidic potassium permanganate chemiluminescence detection. Talanta 80, 2191–2195 (2010).
Google Scholar
Putzbach, K., Rimmer, C. A., Sharpless, K. E. & Sander, L. C. Determination of Bitter Orange alkaloids in dietary supplements standard reference materials by liquid chromatography with ultraviolet absorbance and fluorescence detection. J. Chromatogr. A 1156, 304–311 (2007).
Google Scholar
Roman, M. C., Betz, J. M. & Hildreth, J. Determination of synephrine in bitter orange raw materials, extracts, and dietary supplements by liquid chromatography with ultraviolet detection: Single-laboratory validation. J. AOAC Int. 90, 68–81 (2007).
Google Scholar
Evans, R. L. & Siitonen, P. H. Determination of caffeine and sympathomimetic alkaloids in weight loss supplements by high-performance liquid chromatography. J. Chromatogr. Sci. 46, 61–67 (2008).
Google Scholar
Lorenzo, C. D. et al. Development and validation of HPLC method to measure active amines in plant food supplements containing Citrus aurantium L. Food Control 46, 136–142 (2014).
Google Scholar
Yun, J., Kwon, K., Choi, J. & Jo, C. H. Monitoring of the amphetamine-like substances in dietary supplements by LC-PDA and LC–MS/MS. Food Sci. Biotechnol. 26, 1185–1190 (2017).
Google Scholar
Rodrigues, J. et al. Rapid screening method in the identification of 17 adulterants in dietary supplements. Chromatographia 84, 267–274 (2021).
Google Scholar
Yun, J., Choi, J., Jo, C. H. & Kwon, K. Detection of synthetic anti-obesity drugs, designer analogues and weight-loss ingredients as adulterants in slimming foods from 2015 to 2017. J. Chromatogr. Sep. Tech. 09, 1000396–1000401 (2018).
Viana, C. et al. Liquid chromatographic determination of caffeine and adrenergic stimulants in food supplements sold in brazilian e-commerce for weight loss and physical fitness. Food Addit. Contam. – Part A 33, 1–9 (2015).
Google Scholar
Viana, C. et al. High-performance liquid chromatographic analysis of biogenic amines in pharmaceutical products containing Citrus aurantium. Food Addit. Contam. – Part A 30, 634–642 (2013).
Google Scholar
Gatti, R. & Lotti, C. Development and validation of a pre-column reversed phase liquid chromatographic method with fluorescence detection for the determination of primary phenethylamines in dietary supplements and phytoextracts. J. Chromatogr. A 1218, 4468–4473 (2011).
Google Scholar
Pawar, R. S., Grundel, E., Fardin-kia, A. R. & Rader, J. I. Determination of selected biogenic amines in Acacia rigidula plant materials and dietary supplements using LC – MS / MS methods. J. Pharm. Biomed. Anal. 88, 457–466 (2014).
Google Scholar
Pawar, R. S., Sagi, S. & Leontyev, D. Analysis of bitter orange dietary supplements for natural and synthetic phenethylamines by LC-MS/MS. Drug Test. Anal. 12, 1241–1251 (2020).
Google Scholar
Hsien, A., Koh, W., Chess-williams, R. & Elizabeth, A. HPLC-UV-QDa analysis of Citrus aurantium- labelled pre-workout supplements suggest only a minority contain the plant extract. J. Pharm. Biomed. Anal. 193, 113746–113754 (2021).
Google Scholar
Marchei, E., Pichini, S., Pacifici, R., Pellegrini, M. & Zuccaro, P. A rapid and simple procedure for the determination of synephrine in dietary supplements by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 41, 1468–1472 (2006).
Google Scholar
Mercolini, L. et al. Fast CE analysis of adrenergic amines in different parts of Citrus aurantium fruit and dietary supplements. J. Sep. Sci. 33, 2520–2527 (2010).
Google Scholar
Allahverdiyeva, S., Keskin, E., Pinar, P. T., Yardim, Y. & Senturk, Z. First electroanalytical methodology for the determination of hordenine in dietary supplements using a boron-doped diamond electrode. Electroanalysis 31, 1–8 (2019).
Google Scholar
Haššo, M., Sarakhman, O., Stanković, D. M. & Švorc, L. A new voltammetric platform for reliable determination of the sport performance-enhancing stimulant synephrine in dietary supplements using a boron-doped diamond electrode. Anal. Methods 12, 4749–4758 (2020).
Google Scholar
Zhao, J., Wang, M., Avula, B. & Khan, I. A. Detection and quantitation of phenethylamines in sports dietary supplements by NMR approach. J. Pharm. Biomed. Anal. 151, 347–355 (2018).
Google Scholar
McCalley, D. V. Selection of suitable stationary phases and optimum conditions for their application in the separation of basic compounds by reversed-phase HPLC. J. Sep. Sci. 26, 187–200 (2003).
Google Scholar
Rebiere, H., Guinot, P., Civade, C., Bonnet, P. & Nicolas, A. Detection of hazardous weight-loss substances in adulterated slimming formulations using ultra-high- pressure liquid chromatography with diode-array detection. Food Addit. Contam. Part A 29, 161–171 (2012).
Google Scholar
Snyder, L. R., Kirkland, J. J. & Glajch, J. L. Appendix II: Properties of Solvents Used in HPLC. Practical HPLC Method Dev. 3, 721–728 (2012).
Google Scholar
Validation of Analytical Procedures: Text and Methodology Q2(R1), U. food and drug administration. International Conference on Harmonisation, Validation of Analytical Procedures: Text and Methodology Q2(R1), US food and drug administration. in (2005). https://doi.org/10.1590/s1984-82502011000100012.
FDA guidance for industry on Validation of Chromatographic Methods and USP General 200 Chapter <621> Chromatography. 258–265 (2012).
Karthikeyan, K., Arularasu, G. T., Ramadhas, R. & Pillai, C. K. Development and validation of indirect RP-HPLC method for enantiomeric purity determination of d-cycloserine drug substance. J. Pharm. Biomed. Anal. 54, 850–854 (2011).
Google Scholar
Biesterbos, J. W. H., Sijm, D. T. H. M., van Dam, R. & Mol, H. G. J. A health risk for consumers: The presence of adulterated food supplements in the Netherlands. Food Addit. Contam. – Part A 36, 1273–1288 (2019).
Google Scholar
Gałuszka, A., Migaszewski, Z. M., Konieczka, P. & Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal. Chem. 37, 61–72 (2012).
Google Scholar
Płotka-Wasylka, J. A new tool for the evaluation of the analytical procedure: Green analytical procedure Index. Talanta 181, 204–209 (2018).
Google Scholar
Gamal, M., Naguib, I. A., Panda, D. S. & Abdallah, F. F. Comparative study of four greenness assessment tools for selection of greenest analytical method for assay of hyoscine: N -butyl bromide. Anal. Methods 13, 369–380 (2021).
Google Scholar
Płotka-Wasylka, J. & Wojnowski, W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 23, 8657–8665 (2021).
Google Scholar
Pena-Pereira, F., Wojnowski, W. & Tobiszewski, M. AGREE – analytical GREEnness metric approach and software. Anal. Chem. 92, 10076–10082 (2020).
Google Scholar
Linda, L. Reviewer guidance – validation of chromatographic methods. CDER. Cent. Drug Eval. Res. 22, 1–30 (1998).
This article was optimized by the SEO Team at Clickworks
SEO
Source link